Chapitre 9

Produit scalaire de l'espace

Objectifs du chapitre :

item	références	auto évaluation
calculs de produits sca- laires		
équation cartésienne d'un plan		
intersection de droites et de plan		

1) Produit scalaire dans l'espace

1 - 1Approche géométrique du produit scalaire

Définition:

Soit \vec{u} et \vec{v} deux vecteurs de l'espace et A, B et C trois points tels que $\vec{u} = \overrightarrow{AB} \text{ et } \vec{v} = \overrightarrow{AC}.$

Il existe au moins un plan \mathcal{P} contenant les points A, B et C.

On appelle **produit scalaire** de \vec{u} et \vec{v} , le produit scalaire \overrightarrow{AB} . \overrightarrow{AC} calculé dans le plan \mathcal{P} .

Ainsi,

* Si \vec{u} et \vec{v} sont non nuls, \vec{u} . $\vec{v} = AB \times AC \times cos(\widehat{BAC})$

* Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$, le produit scalaire de \vec{u} et \vec{v} est nul : \vec{u} . $\vec{0} = \vec{0}$ et $\vec{0} \cdot \vec{v} = \vec{0}$.

EXEMPLE:

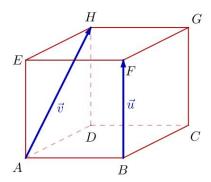
ABCDEFGH est un cube d'arête a.

Notons
$$\vec{u} = \overrightarrow{BF}$$
 et $\vec{v} = \overrightarrow{AH} = \overrightarrow{BG}$

Alors:
$$\vec{u} \cdot \vec{v} = \overrightarrow{BF} \cdot \overrightarrow{AH}$$

 $= \overrightarrow{BF} \cdot \overrightarrow{BG}$
 $= BF \times BG \times \cos(\widehat{FBG})$

Donc,
$$\vec{u}$$
 . $\vec{v} = a \times a \times \sqrt{2} \times \frac{\sqrt{2}}{2} = a^2$



Propriétés:

(1) Si \vec{u} et \vec{v} sont deux vecteurs non nuls tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. alors:

$$\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH} = \overrightarrow{AK} \cdot \overrightarrow{AC}$$

où H est le projeté orthogonal de C sur la droite (AB) et K le projeté orthogonal de B sur la droite (AC).

88

(2) Si \vec{u} , \vec{v} et \vec{w} sont trois vecteurs de l'espace et k un réel, alors :

*
$$\vec{u}$$
 . $(\vec{v} + \vec{w}) = \vec{u}$. $\vec{v} + \vec{u}$. \vec{w} * \vec{u} . $\vec{v} = \vec{v}$. \vec{u}

*
$$\vec{u}$$
 . $\vec{v} = \vec{v}$. \vec{u}

*
$$\vec{u}$$
 . $(k\vec{v}) = k(\vec{u} \cdot \vec{v})$

EXEMPLE:

ABCDEFGH est un cube d'arête a.

* Comme dans le plan (AGC), C est le projeté orthogonal de G sur (AC):

$$\overrightarrow{AG}$$
 . $\overrightarrow{AC} = \overrightarrow{AC}$. $\overrightarrow{AC} = AC^2 = (a\sqrt{2})^2 = 2a^2$

* Pour calculer \overrightarrow{BF} . \overrightarrow{AG} , on peut remplacer le vecteur \overrightarrow{AG} par la somme $\overrightarrow{AB} + \overrightarrow{BG}$:

$$\overrightarrow{BF} \cdot \overrightarrow{AG} = \overrightarrow{BF} \cdot (\overrightarrow{AB} + \overrightarrow{BG}) = \overrightarrow{BF} \cdot \overrightarrow{AB} + \overrightarrow{BF} \cdot \overrightarrow{BG} = 0 + a^2 = a^2$$

1 - 2) Caractérisation vectorielle de l'orthogonalité

Propriété :

Soit $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ deux vecteurs de l'espace.

le produit scalaire \vec{u} . \vec{v} est nul

si, et seulement si

$$\vec{u} = \vec{0}$$
 ou $\vec{v} = \vec{0}$ ou $\widehat{BAC} = \frac{\pi}{2}$

Définition:

Deux vecteurs sont dits **orthogonaux** lorsque leur **produit scalaire est** nul.

Deux droites \mathcal{D} et Δ sont **orthogonales** lorsque leurs vecteurs directeurs respectifs sont orthogonaux. On note alors $\mathcal{D} \perp \Delta$.

REMARQUE:

Deux droites **orthogonales** de l'espace sont dites **perpendiculaires** si elles appartiennent au même plan.

La géométrie plane ne fait pas la distinction entre ces deux mots.

1 - 3) Expression analytique du produit scalaire

Propriété:

Dans un repère **orthonormé** (O; I; J; K), si les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives (x; y; z) et (x'; y'; z'), alors :

$$\vec{u} \cdot \vec{v} = xx' + yy' + zz'$$

En particulier, \vec{u} . $\vec{u} = x^2 + y^2 + z^2$ et $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$

DÉMONSTRATION:

Soit $\vec{i} = \overrightarrow{OI}$, $\vec{j} = \overrightarrow{OJ}$ et $\vec{k} = \overrightarrow{OK}$.

On a : \vec{i} . $\vec{i} = OI \times OI \times cos(0) = 1$

De même, \vec{j} . $\vec{j}=1$ et \vec{k} . $\vec{k}=1$

Les vecteurs \vec{i} , \vec{j} et \vec{k} étant deux à deux orthogonaux, \vec{i} . $\vec{j} = \vec{i}$. $\vec{k} = \vec{j}$. $\vec{k} = 0$

On a $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et $\vec{v} = x'\vec{i} + y'\vec{j} + z'\vec{k}$

Alors:

 $\vec{u} \cdot \vec{v} = xx' \ \vec{i} \cdot \vec{i} + yy' \ \vec{j} \cdot \vec{j} + zz' \ \vec{k} \cdot \vec{k} + (xy' + x'y) \ \vec{i} \cdot \vec{j} + (xz' + x'z) \ \vec{i} \cdot \vec{k} + (yz' + y'z) \ \vec{j} \cdot \vec{k}$ ce qui donne finalement $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$

EXEMPLE:

En reprenant le cube présenté précédemment, on considère le repère orthonormé (A; I; J; K) avec $\overrightarrow{AI} = \frac{1}{a}\overrightarrow{AB}, \overrightarrow{AJ} = \frac{1}{a}\overrightarrow{AD}$ et $\overrightarrow{AK} = \frac{1}{a}\overrightarrow{AE}$.

* Dans ce repère orthonormé, \overrightarrow{AG} a pour coordonnées $(a \; ; \; a \; ; \; a)$ et \overrightarrow{AC} $(a \; ; \; a \; ; \; 0)$.

Le calcul de \overrightarrow{AG} . \overrightarrow{AC} s'obtient par : \overrightarrow{AG} . $\overrightarrow{AC}=a.a+a.a+a.0=2a^2$

* Dans ce repère orthonormé, \overrightarrow{BF} a pour coordonnées (0; 0; a) et \overrightarrow{AG} (a; a; a).

Ainsi, \overrightarrow{BF} . $\overrightarrow{AC} = 0.a + 0.a + a.a = a^2$

2) Applications du produit scalaire

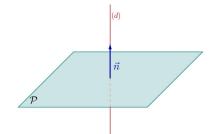
2 - 1) Vecteur normal à un plan

Puisque toutes les droites orthogonales à un même plan sont parallèles entre elles, leurs vecteurs directeurs sont colinéaires, ce qui justifie la définition suivante :

Définition:

Un vecteur \vec{n} est dit orthogonal à un plan si ce vecteur est un vecteur directeur d'une droite orthogonale à ce plan.

Ce vecteur est alors appelé **vecteur normal** au plan.



Théorème :

une droite (d) est orthogonale à toute droite d'un plan \mathcal{P} , si et seulement si elle est orthogonale à deux droites sécantes (d_1) et (d_2) de ce plan.

DÉMONSTRATION - BAC:

Si (d) est orthogonale à toute droite du plan \mathcal{P} , elle est en particulier orthogonale aux droites (d_1) et (d_2) .

Réciproquement, si \vec{u} , $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ sont des vecteurs directeurs, respectivement des droites (d), (d_1) et (d_2) , \vec{u} . $\overrightarrow{v_1} = 0$ et \vec{u} . $\overrightarrow{v_2} = 0$ puisque (d) est orthogonale à (d_1) et (d_2) .

Soit Δ une droite du plan \mathcal{P} et \vec{w} un vecteur directeur de Δ .

Les droites (d_1) et (d_2) étant sécantes, les vecteurs $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ ne sont pas colinéaires et constituent une base du plan \mathcal{P} : il existe donc deux réels x et y tels que $\overrightarrow{w} = x \overrightarrow{v_1} + y \overrightarrow{v_2}$

On a alors : \vec{u} . $\vec{w} = x$ \vec{u} . $\overrightarrow{v_1} + y$ \vec{u} . $\overrightarrow{v_2} = 0$

On en déduit que les vecteurs \vec{u} et \vec{w} sont orthogonaux, et donc que la droite (d) est orthogonale à la droite Δ .

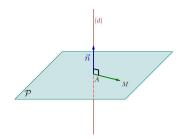
91

2 - 2) Équations cartésiennes d'un plan

Propriété:

Soit \vec{n} un vecteur non nul et A un point de l'espace.

L'unique plan $\mathcal P$ passant par A et de vecteur normal $\vec n$ est l'ensemble des points M tels que \overrightarrow{AM} . $\vec n=0$



DÉMONSTRATION:

Soit M un point du plan \mathcal{P} et (d) une droite de vecteur directeur \vec{n} .

La droite (AM) est alors une droite du plan \mathcal{P} .

On en déduit que \overrightarrow{AM} . $\overrightarrow{n}=0$

Réciproquement, soit M un point de l'espace tel que \overrightarrow{AM} . $\overrightarrow{n}=0$

Alors M est confondu avec A ou (AM) est orthogonale à la droite (d) passant par A et de vecteur directeur \vec{n} , c'est-à-dire que M appartient au plan contenant A et orthogonal à (d).

Propriété :

Dans un repère orthonormé, un plan \mathcal{P} de vecteur normal $\vec{n}(a;b;c)$ a une équation de la forme ax + by + cz + d = 0

Réciproquement, si a, b et c ne sont pas tous les trois nuls, l'ensemble (E) des points M(x; y; z) tels que ax + by + cz + d = 0 est un plan de vecteur normal $\vec{n}(a; b; c)$.

DÉMONSTRATION - BAC:

Soit $A(x_A; y_A; z_A)$ un point du plan \mathcal{P} et M(x; y; z) un point de l'espace.

Le vecteur \overrightarrow{AM} a pour coordonnées $(x - x_A; y - y_A; z - z_A)$ et donc :

 \overrightarrow{AM} . $\overrightarrow{n} = a(x - x_A) + b(y - y_A) + c(z - z_A)$

M appartient à $\mathcal P$ équivaut à \overrightarrow{AM} . $\vec{n}=0,$ soit à

$$a(x - x_A) + b(y - y_A) + c(z - z_A) = 0$$

En posant $d = -(ax_A + by_A + cz_A)$, on obtient une écriture de la forme ax + by + cz + d = 0

Réciproquement, on veut montrer qu'un point M de coordonnées (x; y; z) vérifiant la relation (E): ax + by + cz + d = 0 appartient à un plan \mathcal{P} de vecteur normal $\vec{n}(a; b; c)$.

L'idée est d'utiliser la propriété précédente; il nous faut un point A vérifiant la relation ax + by + cz + d = 0. Puisque a, b et c ne sont pas tous les trois nuls, on peut supposer par exemple que a est non nul.

Le point A de coordonnées $\left(-\frac{d}{a};0;0\right)$ appartient à l'ensemble (E).

L'équation ax+by+cz+d=0 équivaut à $a\left(x+\frac{d}{a}\right)+by+cz=0$, ce qui revient à \overrightarrow{AM} . $\overrightarrow{n}=0$ où $\overrightarrow{n}(a;b;c)$

(E) est donc le plan passant par A et de vecteur normal $\vec{n}(a;b;c)$