Chérie j'ai rétréci la navette

/8

**

1- Bill muni d'un chronomètre est situé dans un référentiel galiléen. Il mesure la durée séparant les événements E_1 et E_2 qui se déroulent au-dessus de sa tête, donc proches de lui. Il mesure une **durée propre**.

* *

2- Boule mesure L₁: $L_1 = v\Delta T'$ Bill mesure L₂: $L_2 = v\Delta T_0$

* *

3- On sait que $\Delta T' = \gamma \times \Delta T_0$ donc $L_1 = \nu \times \gamma \times \Delta T_0 = \lambda L_1 = \gamma \times L_2$

**

4a- La **longueur propre** d'un objet se mesure dans le référentiel où il est immobile. C'est donc Boule, dans la fusée, qui mesure la longueur propre soit L_1 .

4b- Contraction des longueurs :

* *

* *

on sait que $\gamma = \frac{1}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$. Or v<c donc $\gamma > 1$. On en déduit que $L_2 < L_1$. La longueur L_2

mesurée par Bill est plus petite que la longueur propre L₁ mesurée par Boule. On parle donc de contraction des longueurs.

5- On trouve $L_2 = \frac{L_1}{\gamma} = L_1 \times \sqrt{1 - \frac{v^2}{c^2}} = L_2 = 30 \times \sqrt{1 - 0.9^2} = L_2 = 13m.$