TEST

QCM n°1 Examen du 16/10/2014

Durée: 30 minutes.

Aucun document n'est autorisé. L'usage de la calculatrice n'est pas autorisé.

Question 1 Si une suite u_n tend vers 0, et qu'une suite v_n tend vers $-\infty$, alors la suite $u_n \times v_n$ tend vers:

A on ne peut pas $B + \infty$ $C - \infty$ $\boxed{\mathbf{D}}$ 0 conclure

Question 2 la suite $u_n = \frac{n^2 - 1}{10n + 9}$ a pour limite :

 $B + \infty$ $\boxed{\mathbf{A}}$ 0 $\overline{\mathbb{C}}$ $-\infty$ \boxed{D} 1

Question 3 La fonction $f(x) = \frac{1}{(3-x)^2}$ a pour dérivée (sur l'intervalle] $-\infty$; $3[\cup]3$; $+\infty[)$:

A $f'(x) = \frac{2}{(3-x)^5}$

 $B f'(x) = -\frac{2}{(3-x)^5}$

 $C f'(x) = -\frac{2}{(3-x)^3}$

 $D f'(x) = \frac{2}{(3-x)^3}$

Question 4

QCM

A une suite converge toujours vers une valeur

B une suite peut avoir plusieurs limites

C une suite a soit une limite finie, soit une limite infinie

D une suite n'a pas forcément de limite

La fonction qui a pour dérivée $f(x) = x^5$ est : Question 5

A $F(x) = \frac{1}{4}x^4$ B $F(x) = 6x^6$ C $F(x) = 4x^4$ D $F(x) = \frac{1}{6}x^6$

Question 6 la suite $u_n = \frac{1+\sqrt{n}}{1-\sqrt{n}}$ a pour limite :

 $B - \infty$ A -1 $C + \infty$ $\boxed{\mathbf{D}}$ 0

Si une suite u_n tend vers $+\infty$, et qu'une suite v_n tend vers $-\infty$, alors la suite $u_n + v_n$ tend vers:

B on ne peut pas $\boxed{\mathrm{D}}$ $+\infty$ $\begin{bmatrix} C \end{bmatrix} 0$ $A - \infty$ conclure

Si, à partir d'un certain rang, on a : $u_n \le v_n \le w_n$, avec u_n, v_n et w_n trois suites, telles que u_n et w_n sont convergentes, alors :

A la suite v_n converge

B la suite v_n diverge vers $-\infty$

 $\boxed{\mathbb{C}}$ on ne peut rien dire quant à la limite de la suite v_n

 \square la suite v_n diverge vers $+\infty$

Question 9 Si à partir d'un certain rang, pour tout entier n, $u_n \leq v_n$, et si on sait que la suite v_n diverge vers $-\infty$, alors :

- $\boxed{\mathbf{A}} \ lim(u_n) = -\infty$
- $\boxed{\mathbf{B}} \ lim(u_n) = 0$
- $\boxed{\mathbb{C}} \ lim(u_n) = +\infty$
- $\boxed{\mathrm{D}}$ on ne peut rien dire sur la limite de la suite u_n

Question 10 La suite $u_n = \frac{2^n + 3}{3^n - 3}$ tend vers :

A 1

 $\boxed{\mathrm{B}} + \infty$

 $C - \infty$

 $\boxed{\mathbf{D}}$ 0

Question 11 La fonction $f(x) = e^{1-x}$ a pour dérivée :

- $\boxed{\mathbf{A}} \ f'(x) = -e \times e^{1-x}$
- $\boxed{\mathbf{B}} \ f'(x) = e^{1-x}$
- $\boxed{\mathbf{C}} \ f'(x) = -e^{1-x}$
- $\boxed{\mathbf{D}} \ f'(x) = e \times e^{1-x}$

Question 12 La fonction $f(x) = (2x - 3)^4$ a pour dérivée :

- A $f'(x) = 4(2x-3)^5$
- B $f'(x) = 8(2x-3)^5$
- $C f'(x) = 4(2x-3)^3$
- $\boxed{D} \ f'(x) = 8(2x 3)^3$

Question 13 Si une suite u_n tend vers 0, et qu'une suite v_n tend vers $-\infty$, alors la suite $\frac{u_n}{v_n}$ tend vers :

 $A + \infty$

 $\boxed{\mathbf{B}}$ 0

C on ne peut pas conclure $\boxed{\mathrm{D}}$ $-\infty$

Question 14 La fonction $f(x) = \sqrt{2x-1}$ a pour dérivée (sur l'intervalle $]-\frac{1}{2}$; $+\infty[)$:

- $\boxed{\mathbf{A}} \ f'(x) = \frac{1}{\sqrt{2x-1}}$
- $\boxed{\mathbf{B}} \ f'(x) = -\frac{1}{\sqrt{2x-1}}$
- $\boxed{\mathbf{C}} \ f'(x) = \frac{1}{2\sqrt{2x-1}}$
- $D f'(x) = -\frac{1}{2\sqrt{2x-1}}$

Question 15 Si une suite est décroissante :

- |A| elle tend vers $+\infty$
- B si elle est majorée, alors elle tend vers une limite réelle
- C si elle est minorée, alors elle tend vers une limite réelle
- $\boxed{\mathrm{D}}$ elle tend vers $-\infty$