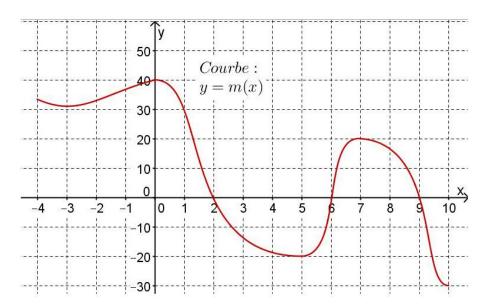
Nom / Prénom:

Certaines questions peuvent être complétées sur le sujet. Inscrivez votre nom et rendez ce sujet avec votre copie.


Exercice 1:

On définit la fonction f pour tout nombre réel par $f(x) = 4x^2 - 40x + 91$

- 1. Montrer que pour tout nombre réel, f(x) = (2x 13)(2x 7)
- 2. Dans chaque situation, choisir la forme la plus appropriée et répondre à la question posée :
 - (a) Résoudre l'équation f(x) = 0
 - (b) Calculer f(0)
 - (c) Déterminer l'image de $\frac{1}{2}$
 - (d) Résoudre l'équation f(x) = 91
 - (e) Résoudre l'équation f(x) = 7 sur l'intervalle [-1; 11]; on pourra s'aider d'un graphique.

Exercice 2:

Dans le repère ci-dessous est tracée la courbe représentative d'une fonction m.

Toutes les réponses seront données avec la précision que permet la lecture graphique.

- 1. Donner l'image de 5
- 2. Combien 15 a-t-il d'antécédents?....
- 3. Donner m(0).....
- 4. Résoudre l'équation m(x) = 0.....
- 5. Résoudre m(x) = 45.....
- 6. Quel est l'ensemble de définition de m?.....
- 7. Résoudre l'inéquation m(x) > 30.....
- 8. Le repère est-il orthonormé?.....

Exercice 3:

On vous rappelle la formule donnant le volume d'un cube d'arête $a:\mathcal{V}=a^3$

Pierre affirme que si on double la longueur de l'arête du cube, le volume de ce cube est doublé : montrez que Pierre se trompe.

Par combien faut-il multiplier l'arête du cube pour que le volume soit effectivement doublé? (toute trace de recherche pertinente sera valorisée)

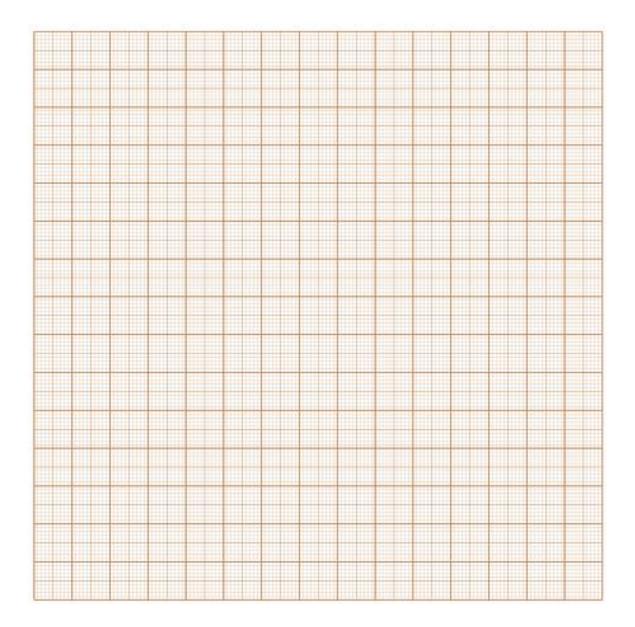
Exercice 4:

Les clients d'un coach sportif effectuent chaque année un test de fitness qui mesure le temps nécessaire pour revenir à un nombre normal de pulsations cardiaques après un effort.

Groupe 2012: 12 personnes dont voici les temps:

58 s - 84 s - 27 s - 48 s - 136 s - 82 s - 42 s - 55 s - 50 s - 105 s - 52 s - 64 s

Groupe 2013 : le groupe avait un écart interquartile de 22 secondes et une médiane de 68 s.


Groupe 2014:

Temps de récupération	Effectif
(en secondes)	
[0;20[3
[20; 40[12
[40; 60[20
[60; 80[14
[80; 100[8
[100; 120[14
[120; 140[9
[140; 160[0

- 1. Pour le groupe de 2012 : reporter sur votre copie les caractéristiques statistiques calculées par votre calculatrice.
- 2. Pour le groupe 2014, compléter le tableau suivant :

Temps de ré-	[0;20[[20; 40[[40; 60]	[60; 80[[80; 100[[100; 120]	[120; 140[
cupération (en							
secondes)							
Fréquence							
Fréq cumulée							
croissante							

- 3. Tracer la courbe des fréquences cumulées croissantes pour le groupe de cette année sur la feuille de papier millimétré ci-contre.
 - On prendra 1 cm pour 10 s et 1 cm pour 10%=0,1 (pour les fréquences cumulées).
- 4. Comparer les trois groupes (deux ou trois phrases peuvent suffire si votre méthode d'analyse est bonne).

Exercice 5:

On vous propose les deux algorithmes suivants :

Saisir
$$A$$

$$\parallel A \leftarrow (A+4)A \\ Afficher A \qquad \parallel B \leftarrow B^2+4B+4$$
 Afficher B

Montrer que ces deux algorithmes ont le même effet sur les nombres placés en entrée.

Exercice 6:

Dans un repère orthonormé (O, \vec{i}, \vec{j}) , on considère les points E(-2; -3), F(1; -6) et G(-1; 1, 2)

- 1. Calculer les coordonnées du vecteur $\overrightarrow{EF} + \overrightarrow{EG}$
- 2. Déterminer les coordonnées de H tel que EFGH soit un parallélogramme.
- 3. Montrer que EFGH n'est pas un losange.
- 4. Calculer les coordonnées du symétrique de F par rapport à E.

Exercice 7:

Exercice « Bonus »

/? points

Dans un repère orthonormé (O, \vec{i}, \vec{j}) , on considère les points A(-2; 1), B(1; 2), C(1; -1) et D(6; 1)

Les droites (AB) et (CD) sont-elles sécantes?

Si oui, quelles sont les coordonnées du point d'intersection?