une famille de fonctions

Pour k réel, on considère la fonction f_k définie sur \mathbb{R} par : $f_k(x) = (x+1)e^{kx}$

1. Quelle est la nature de f_0 ?

 $f_0(x) = (x+1)e^{0 \times x} = x+1$: c'est une fonction affine.

2. Étudier le signe de $(x+1)(e^x-1)$.

On va faire un tableau de signe en remarquant que : $e^x - 1 > 0 \iff e^x > 1 \iff e^x > e^0 \iff x > 0$

X	$-\infty$		-1		0		+∞
signe $(x+1)$		-		+		+	
signe $e^x - 1$		-		-		+	
signe $(x+1)(e^x-1)$		+		-		+	

3. En déduire les positions relatives des courbes représentant les fonctions f_k et f_{k+1} .

On calcule $f_{k+1}(x) - f_k x$:

$$f_{k+1}(x) - f_k x = (x+1)e^{(k+1)x} - (x+1)e^{kx} = (x+1)e^{kx}(e^x - 1)$$

Cette expression a le même signe que $(x+1)(e^x-1)$ puisque e^{kx} est toujours strictement positif.

Ainsi, la courbe représentant f_{k+1} va être au-dessus de la courbe représentant f_k sur l'intervalle $]-\infty$; $-1] \cup [0$; $+\infty[$. Elle est en dessous sur l'intervalle [-1; 0].

4. Étudier le sens de variation de f_k pour k < 0 et k > 0.

La fonction f_k est dérivable sur \mathbb{R} ; on obtient :

$$f'_k(x) = e^{kx} + k(x+1)e^{kx} = e^{kx}(1 + k(x+1))$$

Pour connaître le signe de f'_k , il suffit d'étudier le signe de 1+k(x+1) (l'exponentielle étant strictement positive) :

$$1 + k(x+1) > 0 \iff kx > -1 - k$$

Si k > 0: on peut diviser par k sans changer le sens de l'inégalité.

On obtient alors:
$$f'_k > 0 \iff x > \frac{-1-k}{k} \iff x > -1-\frac{1}{k}$$

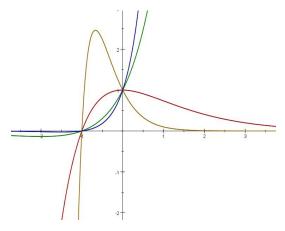
la fonction f_k est donc décroissante sur $\left[-\infty; -1 - \frac{1}{k}\right]$ puis croissante sur $\left[-1 - \frac{1}{k}; +\infty\right]$

Si k < 0: on peut diviser par k mais il faut changer le sens de l'inégalité.

On obtient alors:
$$f'_k > 0 \iff x < \frac{-1-k}{k} \iff x < -1 - \frac{1}{k}$$

la fonction f_k est donc croissante sur $\left[-\infty; -1 - \frac{1}{k}\right]$ puis décroissante sur $\left[-1 - \frac{1}{k}; +\infty\right]$

5. Les courbes ci-dessous représentent les fonctions f_k obtenues pour k = -1, k = -3, k = 1 et k = 2.



Identifier chaque courbe en justifiant la réponse.

Les fonctions d'abord croissantes puis décroissantes ont une valeur de k négatives : c'est le cas des courbes marron et rouge.

Par ailleurs, si k est plus grand que k', la courbe représentant f_k sera au dessus de celle représentant $f_{k'}$ sur l'intervalle $]-\infty;-1]\cup[0;+\infty[$.

On en déduit que la courbe marron représente la fonction f_{-3} et que la courbe rouge représente la fonction f_{-1} .

Par des arguments du même type, on obtient : la courbe verte représente f_1 et la courbe bleue représente f_2 .