Proposition de corrigé

Exercice 1:

On considère la fonction f définie et dérivable sur l'intervalle $[0; +\infty[$ par

$$f(x) = xe^{-x}$$
.

1. Déterminer la limite de la fonction f en $+\infty$.

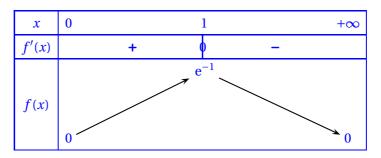
D'après le cours,
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
; donc $\lim_{x \to +\infty} \frac{x}{e^x} = 0$ ce qui équivaut à $\lim_{x \to +\infty} x e^{-x} = 0$.
Donc $\lim_{x \to +\infty} f(x) = 0$

2. Déterminer la dérivée f' de la fonction f sur $[0; +\infty[$ et en déduire le tableau de variations de f sur $[0; +\infty[$.

La fonction
$$f$$
 est dérivable sur \mathbb{R} donc sur $[0; +\infty[$ et :

$$f'(x) = 1 \times e^{-x} + x(-1 \times e^{-x}) = e^{-x} - xe^{-x} = (1 - x)e^{-x}$$

Pour tout réel x, $e^{-x} > 0$ donc f'(x) est du signe de 1 - x; f(0) = 0 et $f(1) = e^{-1} \approx 0,37$ D'où le tableau de variation de la fonction f sur $[0; +\infty[$:



On donne en **annexe** la courbe \mathscr{C}_f représentative de la fonction f dans un repère du plan. La droite Δ d'équation y=x a aussi été tracée.

Partie B

Soit la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

- 1. Placer sur le graphique donné en **annexe**, en utilisant la courbe \mathscr{C}_f et la droite Δ , les points A_0 , A_1 et A_2 d'ordonnées nulles et d'abscisses respectives u_0 , u_1 et u_2 . Laisser les tracés explicatifs apparents.
- **2.** Démontrer par récurrence que pour tout entier naturel n, $u_n > 0$. Soit \mathcal{P}_n la propriété $u_n > 0$.
 - $u_0 = 1 > 0$ donc la propriété est vraie au rang 0.
 - On suppose la propriété vraie au rang $p \ge 0$, c'est-à-dire $u_p > 0$. Pour tout réel x, $e^{-x} > 0$ donc pour tout réel x > 0, $xe^{-x} > 0$ donc f(x) > 0. Or $u_{p+1} = f(u_p)$ et $u_p > 0$ (hypothèse de récurrence) ; donc $f(u_p) > 0$ et donc $u_{p+1} > 0$.

La propriété est vraie au rang p + 1.

 La propriété est vérifiée au rang 0, et elle est héréditaire pour tout p ≥ 0; elle est donc vraie pour tout n ≥ 0. On a donc démontré que, pour tout entier naturel n, $u_n > 0$.

3. Montrer que la suite (u_n) est décroissante.

$$-x < 0 \iff e^{-x} < e^{0}$$
 croissance de la fonction exponentielle
 $\iff e^{-x} < 1$
 $\iff x e^{-x} < x \quad \text{car } x > 0$
 $\iff f(x) < x$

Donc, pour tout x > 0, f(x) < x; or, pour tout n, $u_n > 0$ donc $f(u_n) < u_n$ ce qui veut dire que $u_{n+1} < u_n$. La suite (u_n) est donc décroissante.

4. a. Montrer que la suite (u_n) est convergente.

La suite (u_n) est décroissante, minorée par 0, donc, d'après le théorème de la convergence monotone, la suite (u_n) est convergente.

b. Montrer que la limite de la suite (u_n) est solution de l'équation $xe^{-x} = x$.

 $u_{n+1} = f(u_n)$; comme u_n est convergente vers un réel α , en « passant à la limite » dans cette égalité, du fait de la continuité de la fonction f, on a $\alpha = f(\alpha)$.

Ainsi, la limite de la suite (u_n) est solution de l'équation f(x) = x c'est-à-dire $xe^{-x} = x$.

Résoudre cette équation pour déterminer la valeur de cette limite.

On résout l'équation $xe^{-x} = x$:

$$xe^{-x} = x \iff x(e^{-x} - 1) = 0 \iff x = 0 \text{ ou } e^{-x} - 1 = 0$$

$$\iff x = 0 \text{ ou } e^{-x} = 1 \iff x = 0 \text{ ou } -x = 0$$

Donc la limite de la suite (u_n) est égale à 0.

Partie C

On considère la suite (S_n) définie pour tout entier naturel n par

$$S_n = \sum_{k=0}^{k=n} u_k = u_0 + u_1 + \dots + u_n.$$

Compléter l'algorithme donné en **annexe** afin qu'il calcule S_{100} .

Exercice 2:

On considère l'équation (E_1) :

$$e^x - x^n = 0$$

où *x* est un réel strictement positif et *n* un entier naturel non nul.

1. Montrer que l'équation (E_1) est équivalente à l'équation (E_2) :

$$\ln(x) - \frac{x}{n} = 0.$$

$$e^{x} - x^{n} = 0 \iff e^{x} = x^{n}$$

$$\iff \ln(e^{x}) = \ln(x^{n})$$

$$\iff x = n \ln(x)$$

$$\iff \frac{x}{n} = \ln(x)$$

$$\iff \ln(x) - \frac{x}{n} = 0$$

Donc les équations (E_1) et (E_2) sont équivalentes.

2. Pour quelles valeurs de n l'équation (E_1) admet-elle deux solutions?

L'équation (E_1) admet deux solutions si et seulement si l'équation (E_2) admet deux solu-

Soit f la fonction définie sur I =]0; $+\infty$ [par $f(x) = \ln(x) - \frac{x}{n}$; résoudre l'équation (E_2) revient donc à résoudre l'équation f(x) = 0

Cherchons les limites de la fonction f aux bornes de son ensemble de définition :

$$\lim_{\substack{x \to 0 \\ x > 0}} \ln(x) = -\infty$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{x}{n} = 0$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$$

$$f(x) = \ln(x) - \frac{x}{n}$$
 peut s'écrire $x\left(\frac{\ln(x)}{x} - \frac{1}{n}\right)$ pour tout x de $]0; +\infty[$.

$$f(x) = \ln(x) - \frac{x}{n} \text{ peut s'écrire } x \left(\frac{\ln(x)}{x} - \frac{1}{n} \right) \text{ pour tout } x \text{ de }]0; +\infty[.$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \Longrightarrow \lim_{x \to +\infty} \frac{\ln(x)}{x} - \frac{1}{n} = -\frac{1}{n} < 0$$

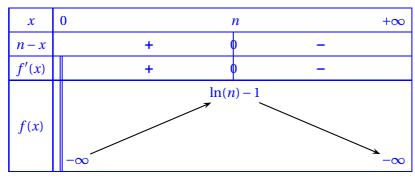
$$\lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to +\infty} x \left(\frac{\ln(x)}{x} - \frac{1}{n} \right) = -\infty \Longleftrightarrow \lim_{x \to +\infty} f(x) = -\infty$$

La fonction f est dérivable sur I et $f'(x) = \frac{1}{x} - \frac{1}{n} = \frac{n-x}{nx}$.

f'(x) s'annule et change de signe pour x = n et $f(n) = \ln(n) - \frac{n}{n} = \ln(n) - 1$.

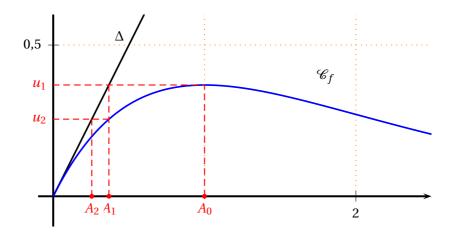
D'où le tableau de variation de la fonction f:



D'après ce tableau de variation, l'équation f(x) = 0 admet deux solutions dans $]0; +\infty[$ si et seulement si le maximum de la fonction f est strictement positif, c'est-à-dire quand ln(n) - 1 > 0:

$$ln(n) - 1 > 0 \iff ln(n) > 1 \iff n > e \iff n \geqslant 3$$

Donc on peut dire que l'équation (E_1) admet deux solutions si et seulement si n est un entier naturel supérieur ou égal à 3.



Annexe de l'exercice 2 à rendre avec la copie

Partie B - Question 1

Partie C

Déclaration des variables : S et u sont des nombres réels

k est un nombre entier

Initialisation: u prend la valeur 1

S prend la valeur *u*

Traitement : Pour k variant de 1 à 100

u prend la valeur $u \times e^{-u}$

S prend la valeur S + u

Fin Pour Afficher *S*