Chapitre 3

Compléments sur les fonctions numériques

1) Compléments sur la dérivation

1 - 1) Dérivées des fonctions \sqrt{u} et $u^n, n \in \mathbb{Z}$

Théorème:

Si u est une fonction strictement positive, dérivable sur un intervalle I, alors la fonction \sqrt{u} est dérivable sur I, et pour tout x de I:

$$\left(\sqrt{u(x)}\right)' = \frac{u'(x)}{2\sqrt{u(x)}}$$

EXEMPLE:

 $f(x) = \sqrt{x^2 + x + 1}$ peut être vu comme $u(x) = x^2 + x + 1$, avec $f(x) = \sqrt{u(x)}$; au passage, on peut vérifier que pour tout x de \mathbb{R} , $x^2 + x + 1 > 0$.

on peut vérifier que pour tout
$$x$$
 de \mathbb{R} , $x^2 + x + 1 > 0$.
D'après le théorème précédent, $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{2x+1}{2\sqrt{x^2+x+1}}$

DÉMONSTRATION:

Soit a un réel appartenant à I et h un réel tel que a+h appartient à I.

Le taux d'accroissement de la fonction \sqrt{u} entre a et a+h est égal à :

$$\tau(h) = \frac{\sqrt{u(a+h)} - \sqrt{u(a)}}{h}$$

En multipliant le numérateur et le dénominateur par $\sqrt{u(a+h)} + \sqrt{u(a)}$ (c'est ce qu'on appelle la quantité « conjuguée » de $\sqrt{u(a+h)} - \sqrt{u(a)}$), on obtient :

$$\tau(h) = \frac{u(a+h) - u(a)}{h} \times \frac{1}{\sqrt{u(a+h)} + \sqrt{u(a)}}$$

u est <u>continue</u> en a donc : $\lim_{h\to 0} \frac{1}{\sqrt{u(a+h)} + \sqrt{u(a)}} = \frac{1}{2\sqrt{u(a)}}$

u est <u>dérivable</u> en a donc : $\lim_{h\to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$

On obtient par produit de limites : $\lim_{h\to 0} \tau(h) = u'(a) \times \frac{1}{2\sqrt{u(a)}}$

Ainsi, \sqrt{u} est dérivable en a et le nombre dérivé est égal à $\frac{u'(a)}{2\sqrt{u(a)}}$

Ceci étant vrai pour tout a de I, on conclut que \sqrt{u} est dérivable sur I avec $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$

25

Théorème:

n est un entier non nul.

Si u est une fonction dérivable sur un intervalle I, et si, lorsque n est négatif, u ne s'annule pas sur I, alors la fonction u^n est dérivable sur I, et pour tout x de I:

$$(u^n(x))' = n \ u'(x) \ u^{n-1}(x)$$

EXEMPLE:

 $f(x) = (x^2 + x + 1)^3$ peut être vu comme $u(x) = x^2 + x + 1$, avec $f(x) = (u(x))^3$. D'après le théorème précédent, $f'(x) = 3u'(x)u^{3-1}(x) = 3 \times (2x+1)(x^2+x+1)^2$

DÉMONSTRATION:

Démonstration pour n entier naturel non nul :

Si u est la fonction nulle, ce résultat est bien vérifié. Sinon, on procède par récurrence.

u étant une fonction dérivable sur un intervalle I, on pose pour tout entier $n \ge 1$, P(n): $(u^n(x))' = n \ u'(x) \ u^{n-1}(x) \gg 1$

<u>Initialisation</u>: pour n = 1, $(u^1)' = u'$; d'autre part, $1 \times u' \times u^{1-1} = u'$: P(1) est vraie.

<u>Hérédité</u> : supposons que pour $p \ge 1$, P(p) est vraie (c'est l'hypothèse de récurrence).

Montrons maintenant que P(p+1) est vraie :

$$(u^{p+1})' = (u \times u^p)' = u' \times u^p + u \times (u^p)'$$
 (par dérivation d'un produit)

Cela donne, en utilisant l'hypothèse de récurrence :

$$(u^{p+1})' = u' \times u^p + p \times u'u^{p-1} = u' \times u^p + p \ u'u^p = (p+1) \ u' \ u^p$$

Cela montre que P(p+1) est vraie.

<u>Conclusion</u>: la proposition est vraie au rang 1, elle est héréditaire; d'après le principe de récurrence, P(n) est vraie pour tout entier $n \ge 1$.

Démonstration pour n entier strictement négatif :

Il suffit de remarquer que $u^n = \frac{1}{u^{-n}}$ et qu'alors, -n est un entier strictement positif.

On peut alors appliquer le résultat précédent à u^{-n} ; ainsi :

$$(u^n)' = \left(\frac{1}{u^{-n}}\right)' = -\frac{(u^{-n})'}{(u^{-n})^2} = -\frac{(-n)u'u^{-n-1}}{u^{-2n}} = n \ u' \ u^{-n-1+2n} = n \ u' \ u^{n-1}$$

On retrouve bien le résultat précédent.

1 - 2) Dérivée de $x \mapsto f(ax + b)$

Théorème:

f est une fonction dérivable sur \mathbb{R} , a et b deux nombres $(a \neq 0)$.

Alors la fonction $g: x \mapsto f(ax + b)$ est dérivable sur \mathbb{R} .

Sa dérivée g' est définie par g'(x) = af'(ax + b)

EXEMPLE:

 $g(x)=(2x+3)^5$ peut être vu comme f(2x+3), avec $f(X)=X^5$; on a alors $f'(X)=5X^4$ D'après le théorème précédent, $g'(x)=2f'(2x+3)=2\times 5(2x+3)^4=10(2x+3)^4$

DÉMONSTRATION:

Pour tout nombre $h \neq 0$, notons $\tau(h)$ le taux d'accroissement de g entre x et x + h:

$$\tau(h) = \frac{g(x+h) - g(x)}{h} = \frac{f(a(x+h) + b) - f(ax+b)}{h}$$

Posons
$$ax + b = X$$
 et $ah = H$; alors, $\tau(h) = a \times \frac{f(X + H) - f(X)}{H}$

Or, $\lim_{h\to 0} H = 0$ et $\lim_{H\to 0} \frac{f(X+H)-f(X)}{H} = f'(H)$, par dérivabilité de la fonction f.

D'après le théorème sur la limite d'une fonction composée,

$$\lim_{h \to 0} \frac{f(ax+b+ah) - f(ax+b)}{ah} = f'(ax+b)$$

Il en résulte que $\lim_{h\to 0} \tau(h) = a \times f'(ax+b)$. Ainsi, g est dérivable en x.

Ce résultat étant vrai pour tout nombre x de \mathbb{R} , g est dérivable et g'(x) = af'(ax + b)

2) Les fonctions sinus et cosinus

2 - 1) Définitions et propriétés des fonctions sinus et cosinus

Définitions:

- (1) La fonction sinus est la fonction qui, à tout réel x, associe sin(x).
- (2) La fonction **cosinus** est la fonction qui, à tout réel x, associe cos(x).

Propriétés:

- (1) Les fonctions sinus et cosinus sont **continues** sur \mathbb{R} .
- (2) Les fonctions sinus et cosinus sont **dérivables** sur \mathbb{R} , et pour tout réel x:

$$sin'(x) = cos(x)$$
 et $cos'(x) = -sin(x)$

(3) La fonction f définie sur \mathbb{R} par f(x) = sin(ax + b) est dérivable sur \mathbb{R} , et pour tout réel x:

$$sin'(ax+b) = a cos(ax+b)$$

La fonction f définie sur \mathbb{R} par f(x) = cos(ax+b) est dérivable sur \mathbb{R} , et pour tout réel x:

$$\cos'(ax+b) = -a\sin(ax+b)$$

Pérodicité:

Pour tout réel x, $sin(x + 2\pi) = sin(x)$ et $cos(x + 2\pi) = cos(x)$

On dit que les fonctions sinus et cosinus sont **périodiques** de période 2π .

Conséquence:

Pour tracer la courbe représentative de la fonction sinus, il suffit de la tracer sur un intervalle d'amplitude 2π , puis de compléter par des translations successives de vecteur $2\pi \vec{i}$ ou $-2\pi \vec{i}$.

Il en est de même pour la courbe représentative de la fonction cosinus.

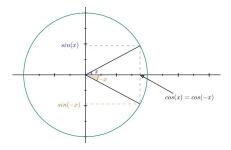
Parité:

Pour tout réel x, sin(-x) = -sin(x) et cos(-x) = cos(x)

On dit que la fonction sinus est **impaire** et que la fonction cosinus est **paire**.

COMMENTAIRE:

On peut retrouver ces relations par les constructions suivantes, où l'on fait apparaître les angles x et -x sur le **cercle trigonométrique** :



Conséquence:

Dans un repère orthogonale, la courbe représentative de la fonction sinus est symétrique par rapport à l'origine du repère O. Celle de la fonction est symétrique par rapport à l'axe des ordonnées.

2 - 2) Courbes représentatives des fonctions sinus et cosinus

Pour tracer la courbe représentative de la fonction sinus, il suffit de faire une étude sur $[0;\pi]$ puis de tenir compte des conséquences graphiques de la périodicité et de la parité de cette fonction.

On trace donc la courbe sur $[0; \pi]$ (en noir), puis on la complète par symétrie par rapport à O (en bleu), puis par translation (en rouge et en vert).

x	0		$\frac{\pi}{2}$		π
sin'(x) = cos(x)		+	0	_	
sin		7	1	\searrow	
	0				0

