1.
$$-u_2 = \frac{1+1}{2\times 1}u_1 = \frac{1}{2}$$

 $-u_3 = \frac{2+1}{2\times 2}u_2 = \frac{3}{4} \times \frac{1}{2} = \frac{3}{8}$
 $-u_4 = \frac{3+1}{2\times 3}u_3 = \frac{4}{6} \times \frac{3}{8} = \frac{1}{4}$

- **2. a.** Montrons par récurrence que, pour tout entier naturel n non nul, $u_n > 0$.

 - **Initialisation.** $u_1 = \frac{1}{2} > 0$, la propriété est vraie au rang 1. **Hérédité.** Supposons que, pour un certain entier naturel k non nul on a $u_k > 0$, alors, comme $\frac{k+1}{2k} > 0$, on a $\frac{k+1}{2k} u_k > 0$, c'est-à-dire $u_{k+1} > 0$, et la propriété est donc héréditaire.
 - **Conclusion.** Pour tout entier naturel n non nul : $u_n > 0$.
 - **b.** Soit $n \in \mathbb{N}^*$, alors $\frac{u_{n+1}}{u_n} = \frac{n+1}{2n} = \frac{n+1}{n+n} \leqslant 1$. Comme $u_n > 0$ on en déduit que $u_{n+1} \leqslant u_n$ et donc que la suite (u_n) est décroissante.
 - c. La suite (u_n) est décroissante, minorée (par 0), elle est donc convergente vers une limite
- **a.** Soit $n \in \mathbb{N}^*$, alors : $v_{n+1} = \frac{u_{n+1}}{n+1} = \frac{\frac{n+1}{2n}u_n}{n+1} = \frac{1}{2} \times \frac{1}{n}u_n = \frac{1}{2}v_n$. La suite (v_n) est donc une suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_1 = u_1 = \frac{1}{2}$.
 - **b.** Par propriété des suites géométriques, pour tout $n \in \mathbb{N}^*$: $v_n = \left(\frac{1}{2}\right)^{n-1} v_1 = \frac{1}{2^n}$, on en déduit, comme $v_n = \frac{u_n}{n}$, que $u_n = \frac{n}{2^n}$
- **a.** On peut écrire, pour tout réel $x \in [1; +\infty[: f(x) = x \left(\frac{\ln x}{x} \ln 2\right)]$. On sait que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ (croissances comparées), donc, par opérations sur les limites : $\lim_{x \to +\infty} f(x) = -\infty$.
 - **b.** Soit $n \in \mathbb{N}^*$, alors $\ln u_n = \ln \left(\frac{n}{2^n} \right) = \ln n \ln (2^n) = \ln n n \ln 2 = f(n)$. On en déduit que : $\lim_{n \to +\infty} \ln u_n = -\infty$, puis, par application de la fonction exponentielle et de la limite d'une composée : $\lim_{n \to +\infty} u_n = 0$.

Remarque. On aurait pu déterminer la limite ℓ de la suite (u_n) dès la question 2 c. En effet la relation $u_{n+1} = \frac{n+1}{2n}u_n$ entraı̂ne que, lorsque n tend vers $+\infty$, $\ell = \frac{1}{2}\ell$ et donc que $\ell = 0$.