
Chapitre 16

Aires et volumes

I aire

L'aire d'une surface est sa mesure dans une unité d'aire donnée :

Ces deux figures ont pour aire : 24 carreaux.

II unité d'aire

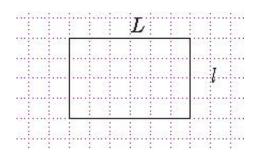
L'unité d'aire est le **mètre carré**, noté m^2 : c'est l'aire d'un carré de 1 m de côté.

Le tableau suivant est à connaître par coeur :

km^2		hm^2		dam^2		m^2		dm^2		cm^2		mm^2	
											1	0	0
								1	6	3	4	2	
5	6	3	2	8	4								
					5	3	9	5	1				

Grâce au tableau précédent, on peut dire que :

 $-1 \text{ cm}^2 = 100 \text{ mm}^2$

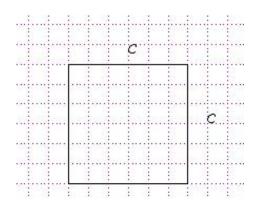

 $-16,342 \text{ dm}^2 = 1634,2 \text{ cm}^2 = 163 420 \text{ mm}^2$

 $-56,3284 \text{ km}^2 = 5632,34 \text{ hm}^2 = 563284 \text{ dam}^2 = 56328400 \text{ m}^2$

 $-\ 5{,}3951\ dam^2 = 539{,}51\ m^2 = 5\ 395\ 100\ mm^2$

III aires de figures usuelles

III - 1) aire d'un rectangle

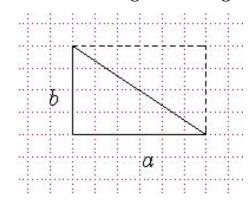

 $\mathcal{A} = L \times l$

exemple:

L'aire d'un rectangle de 6 cm de longueur et 4 cm de largeur :

$$\mathcal{A} = L \times l = 6 \times 4 = 24 \text{ cm}^2$$

III - 2) aire d'un carré


 $\mathcal{A} = c \times c$

exemple:

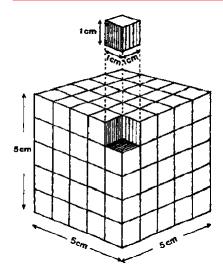
L'aire d'un carré de 6 cm de côté :

$$\mathcal{A} = c \times c = 6 \times 6 = 36 \text{ cm}^2$$

III - 3) aire d'un triangle rectangle

$$\mathcal{A} = \frac{a \times b}{2}$$

exemple:

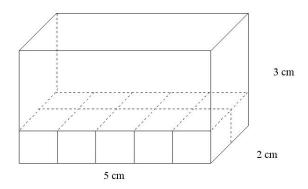

L'aire d'un triangle rectangle de 6 cm de base et 4 cm de hauteur :

$$A = \frac{a \times b}{2} = A = \frac{6 \times 4}{2} = \frac{24}{2} = 12 \text{ cm}^2$$

IV définition du volume

IV - 1) volume du cube

définition : le volume d'un cube (exprimé en cm³), c'est le nombre de cubes de 1 cm d'arête que l'on peut mettre à l'intérieur.


Dans la figure ci-contre, il y a : $5 \times 5 \times 5$ petits cubes. or : $5 \times 5 \times 5 = 25 \times 5 = 125$ et donc ce cube a un volume de 125 cm³.

Formule du volume d'un cube dont l'arête est égale à a :

$$\mathcal{V} = a \times a \times a$$

si a est en cm, \mathcal{V} est en cm³

IV - 2) volume du pavé

Dans la figure ci-contre, il y a : $5 \times 2 = 10$ petits cubes au premier niveau.

Il y a 3 niveaux, donc au total : $10 \times 3 = 30$ petits cubes.

On aurait pu faire directement : $5 \times 2 \times 3 = 10 \times 3 = 30$ pour trouver le résultat.

Ce pavé a un volume de $30~{\rm cm}^3$.

Formule du volume d'un pavé qui mesure a sur b sur c :

$$\mathcal{V} = a \times b \times c$$

*a, b et c doivent avoir **la même unité de longueur**, *si a, b et c sont exprimés en m, V est en m³

V conversion de volumes

On peut utiliser un tableau de conversion des volumes pour passer d'une unité à une autre :

j	km^3		hm^3		dam^3		m^3			dm^3			cm^3			mm^3				
												1	6	3	4	2				
5	6	3	2	8	4															
						5	3	9	5	1	8	9								
																	2	8	4	5

Grâce à ce tableau, on peut dire que :

$$- 163,42 \text{ dm}^3 = 163 420 \text{ cm}^3 = 0,16342 \text{ m}^3$$

$$-\ 563,\!284\ \mathrm{km}^{\ 3}=563\ 284\ \mathrm{hm}^{3}=563\ 284\ 000\ \mathrm{dm}^{3}$$

$$-\ 2,\!845\ \mathrm{cm^3} = 2845\ \mathrm{mm^3} = 0,\!002845\ \mathrm{dm^3}$$

VI volume et contenance

Un volume se mesure en « $quelque\ chose\ > 3$ (exemple : m^3 , cm^3 , etc.).

Une contenance se mesure en Litres (L)

A retenir : $1 \text{ dm}^3 = 1 \text{ L}$

 $exemple: 2,845~{\rm cm}^3 = 0,002845~{\rm dm}^3 = 0,002845~{\rm L}$