Chapitre 6

Probabilités - Variable aléatoire

Objectifs du chapitre :

item	références	aut	auto évaluation			
déterminer la loi de pro- babilité d'une variable aléatoire						
calculer l'espérance ma- thématique d'une va- riable aléatoire						
utiliser un arbre pon- déré						

I Variable aléatoire et loi de probabilité

définition 1:

Lorsqu'à chaque évènement élémentaire d'une expérience aléatoire on associe un nombre réel, on dit que l'on définit une variable aléatoire.

Une variable aléatoire est généralement notée par une lettre majuscule X, Y, Z, \dots

Lorsque a_1, a_2, \ldots, a_n sont les valeurs prises par une variable aléatoire X, on note $(X = a_i)$ l'évènement « X prend la valeur a_i » (avec $1 \le i \le n$).

exemple:

On définit un jeu par la règle suivante :

- « On lance un dé bien équilibré à 6 faces. On perd autant d'euros que le numéro sorti, sauf pour le 6 où on gagne 12 euros. »
- * L'expérience aléatoire est le lancer du dé.
- * Les évènements élémentaires sont les numéros de sortie du dé.
- * A chaque numéro de sortie du dé, on associe selon la règle explicitée, un nombre :
- si le nombre 1 sort, on lui associe (-1) (puisqu'on perd 1€).
- si le nombre 6 sort, on lui associe 12 (puisqu'on gagne 12€).

On peut ainsi définir la variable aléatoire X qui correspond au gain algébrique (gain s'il est positif, perte s'il est négatif) lorsqu'on joue à ce jeu avec cette règle.

définition 2:

Lorsqu'à chaque valeur a_i (avec $1 \le i \le n$) prise par une variable aléatoire X, on associe la probabilité de l'évènement $(X = a_i)$, on dit qu'on a définit la **loi de probabilité de X**.

On peut présenter cette loi grâce à un tableau. Notez que $p_1+p_2+\ldots+p_n=1$

Valeur de a_i	a_1	a_2	 a_n
$p(X = a_i)$	p_1	p_2	 p_n

exemple:

En reprenant l'exemple précédent, la loi de probabilité de la variable aléatoire X représentant le gain (algébrique) est donnée par le tableau suivant :

Gain	-1	-2	-3	-4	-5	12
$p(X=a_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

II Espérance mathématique

Considérons une variable aléatoire X qui prend les valeurs a_1, a_2, \ldots, a_n .

définition 3:

L'espérance mathématique de X est le nombre noté E(X) défini par :

$$E(X) = a_1 \times p(X = a_1) + a_2 \times p(X = a_2) + \dots + a_n \times p(X = a_n)$$

remarque:

L'espérance mathématique peut être interprétée comme une valeur moyenne dans le cas d'un grand nombre de répétitions.

exemple:

Dans le cas du jeu de dé, l'espérance est égale à :

$$E(X) = (-1) \times \frac{1}{6} + (-2) \times \frac{1}{6} + (-3) \times \frac{1}{6} + (-4) \times \frac{1}{6} + (-5) \times \frac{1}{6} + 12 \times \frac{1}{6}$$

Cela donne : $E(X) = \frac{-15+12}{6} = -\frac{1}{2}$

L'espérance de ce jeu étant négative, cela signifie que si l'on y joue un grand nombre de fois, on est presque sûr de perdre de l'argent.

La règle du jeu est favorable à la personne qui organise le jeu.

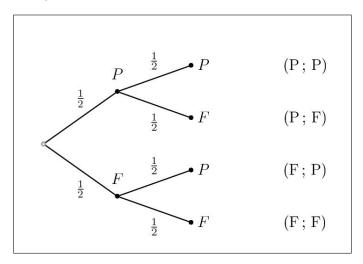
III Répétition d'expériences - Arbres pondérés

Il est commode de représenter une répétition d'expériences identiques et indépendantes par un arbre pondéré. On peut alors appliquer la **règle suivante** :

La probabilité d'un évènement correspondant à un chemin est égale au produit des probabilités inscrites sur chaque branche de ce chemin.

exemple:

On lance deux fois une pièce de monnaie bien équilibrée. Cette situation peut être représentée par l'arbre pondéré ci-dessous, dans lequel P désigne l'évènement « obtenir PILE » et F l'évènement « obtenir FACE ».



On note X la variable aléatoire comptant le nombre de FACE observé à chaque série de deux lancers.

* p(X=0) est égale à la probabilité de n'obtenir aucun FACE c'est à dire p((P,P)).

Donc
$$p(X = 0) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

De même,
$$p(X = 1) = p((F, P), (P, F)) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$$

$$p(X=2) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

On représente la loi de probabilité de X dans le tableau ci-dessous :

Valeur
$$a_i \mid 0 \mid 1 \mid 2$$
 $p(X = a_i) \mid \frac{1}{4} \mid \frac{1}{2} \mid \frac{1}{4}$

Il est facile de vérifier que p(X = 0) + p(X = 1) + p(X = 2) = 1

*
$$E(X) = 0 \times p(X = 0) + 1 \times p(X = 1) + 2 \times p(X = 2) = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1$$