Chapitre 3

Pourcentages

Objectifs du chapitre :

item	références	auto évaluation
relier évolutions et pourcentages		
étudier des évolutions successives		
calculer le taux d'évolu- tion réciproque		

Ι lien entre une évolution et un pourcentage

définition et théorème I - 1

définition:

t désigne un nombre strictement positif.

Une grandeur passe de la valeur positive x_0 à la valeur positive x_1 .

- 1. On dit que cette grandeur a **augmenté de** t% si $x_1 = x_0 + \frac{t}{100}x_0$
- 2. On dit que cette grandeur a diminué de t% si $x_1 = x_0 \frac{t}{100}x_0$

exemples:

* Le litre de gasoil est à 1,28 \in . Il augmente de 10%. Son prix devient : 1,28 + $\frac{10}{100}$ × 1,28 = 1,28 + 0,128 = 1,408 \in

* Un pantalon coûtait 45 €avant des soldes.

Il est soldé à -20%. Il coûte après réduction : $45 - \frac{20}{100} \times 45 = 45 - 9 = 36 \in$

théorème:

t désigne un nombre strictement positif.

1. En passant de la valeur positive x_0 à la valeur positive x_1 , une grandeur a augmenté de t%.

Alors:

$$x_1 = (1 + \frac{t}{100})x_0$$
 et $\frac{t}{100} = \frac{x_1 - x_0}{x_0}$

2. En passant de la valeur positive x_0 à la valeur positive x_1 , une grandeur a diminué de t%. Alors:

$$x_1 = (1 - \frac{t}{100})x_0$$
 et $\frac{t}{100} = \frac{x_0 - x_1}{x_0}$

démonstration:

1. Par définition, on a : $x_1 = x_0 + \frac{t}{100}x_0$, donc $x_1 = (1 + \frac{t}{100})x_0$ Cette relation donne aussi : $\frac{t}{100}x_0 = x_1 - x_0$, c'est-à-dire : $\frac{t}{100} = \frac{x_1 - x_0}{x_0}$

2. Par définition, on a : $x_1=x_0-\frac{t}{100}x_0$, donc $x_1=(1-\frac{t}{100})x_0$ Cette relation donne aussi : $\frac{t}{100}x_0=x_0-x_1$, c'est-à-dire : $\frac{t}{100}=\frac{x_0-x_1}{x_0}$

remarque:

L'égalité $\frac{t}{100} = \frac{x_1 - x_0}{x_0}$ permet de calculer t quand on connaît x_0 et x_1 .

I - 2) méthode

a) méthode

le principe à retenir est le suivant :

Prix de départ \times Coefficient multiplicateur = Prix final

Dans les exercices, on donnera soit :

- * le prix de départ et l'augmentation/diminution en pourcentage : prix final à trouver
- * le prix de départ et le prix final : augmentation/ diminution en pourcentage à trouver
- * le prix final et l'augmentation/réduction en pourcentage : prix de départ à trouver

b) coefficient multiplicateur

Il faut absolument être capable de passer à une augmentation / diminution exprimée en pourcentage au coefficient multiplicateur correspondant, et vice versa :

augmentation ou diminution (%)	coefficient multiplicateur	
+~25~%	$k = 1 + \frac{25}{100} = 1,25$	
-2%	$k = 1 - \frac{2}{100} = 0,98$	
c'est une hausse; $1,55-1=55\%$	k = 1,55	
c'est une baisse; $1-0,47=53~\%$	k = 0,47	
c'est une hausse; $3 - 1 = 2 = 200\%$	k = 3	

c) exemples

exemple $n^{\circ}1$:

Prix de départ : 1,28 €; prix final : 1,402 €; quelle évolution?

Il s'agit d'une hausse.

Prix de départ \times Coefficient multiplicateur = Prix final

Cela donne : $1,28 \times k = 1,402$, (en notant k le coefficient multiplicateur correspondant à cette hausse); ce qui revient à :

$$k = \frac{1,402}{1,28} = 1,1$$

Reste à faire le lien entre un coefficient multiplicateur et une évolution en pourcentage : un coefficient multiplicateur de 1,1 correspond à une hausse de 1,1 - 1 = 0,1 = 10%.

exemple n^2 :

Prix final : $36 \in$; évolution : baisse de 20 %; quel prix initial?

$Prix de départ \times Coefficient multiplicateur = Prix final$

Une baisse de 20 % donne un coefficient multiplicateur égal à : $1 - \frac{20}{100} = 0,8$

Cela donne : $x \times 0, 8 = 36$, (en notant x le prix de départ recherché); ce qui revient à :

$$x = \frac{36}{0.8} = 45$$

Le prix avant la baisse était égal à 45 €.

II Évolutions successives

II - 1) méthode

Dans ce type de problème, on propose des évolutions exprimées en pourcentage les unes à la suite des autres.

On peut schématiser ainsi:

$$\overline{ ext{Prix de départ} o ext{\'e} volution \ n$$
°1 $o ext{Prix } \mathbf{n}$ °1 $o ext{\'e} volution \ n$ °2 $o ext{Prix } \mathbf{n}$ °2 ...

Il suffira d'appliquer la méthode vue dans le paragraphe précédent plusieurs fois de suite.

II - 2) exemples

exemple n°1:

De janvier à juin 2010, le prix d'un produit a augmenté de 20%, de juillet à décembre 2010, il a subi une nouvelle hausse de 30%. Ainsi, ce produit a subi deux hausses successives.

Le coefficient multiplicateur associé à la première hausse est égal à $1 + \frac{20}{100} = 1,2$

Le coefficient multiplicateur associé à la deuxième hausse est égal à $1 + \frac{30}{100} = 1,3$

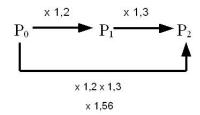
Si on note P_0 le prix en janvier 2010, P_1 le prix en juin 2010 et P_3 le prix en décembre 2010, on a :

$$P_0 \times 1, 2 = P_1 \text{ et } P_1 \times 1, 3 = P_2$$

Ainsi, on obtient : $P_0 \times 1, 2 \times 1, 3 = P_2$, c'est-à-dire $P_0 \times 1, 56 = P_2$

Pour passer du prix de janvier 2010 au prix de décembre 2010, on a un coefficient multiplicateur égal à 1,56, ce qui correspond à une hausse de 56%.

On peut résumer par le schéma suivant :



La conclusion de cet exercice est qu'une hausse de 20% suivie d'une hausse de 30% revient à une hausse de 56%.

exemple n°2:

Une grandeur augmente de 50% puis baisse de 50%.

Le coefficient multiplicateur associé à la hausse est égal à $1 + \frac{50}{100} = 1,5$

Le coefficient multiplicateur associé à la baisse est égal à $1 - \frac{50}{100} = 0,5$

Le coefficient multiplicateur associé à la hausse suivie de la baisse est égal à : $1,5 \times 0,5 = 0,75$.

Ce coefficient multiplicateur correspond à une baisse de 25%.

Retenir: le coefficient multiplicateur $1 + \frac{t}{100}$ ou $1 - \frac{t}{100}$ est un outil efficace de résolution de problèmes de situations d'évolutions successives.

III Évolution réciproque

définition:

Une grandeur de valeur initiale x_0 non nulle augmente de t%, notons x_1 sa nouvelle valeur.

Le pourcentage de baisse de x_1 , pour que cette grandeur retrouve sa valeur initiale x_0 est appelé **pourcentage d'évolution réciproque**.

remarque: on définit de manière analogue le pourcentage d'évolution réciproque dans le cas d'une baisse de t%.

exemple:

Une grandeur de valeur initiale x_0 non nulle subit une hausse de 50%. Notons x_1 sa nouvelle valeur et cherchons le pourcentage de baisse réciproque :

- * pour passer de x_0 à x_1 , on multiplie par $1 + \frac{50}{100} = 1, 5$
- * pour passer de x_1 à x_0 , on divise donc par 1,5
- * chercher à trouver l'évolution de x_1 à x_0 , c'est chercher par combien on doit multiplier x_1 pour obtenir x_0
- * or, diviser par 1,5 revient à multiplier par son inverse, c'est-à-dire par $\frac{1}{1,5} = \frac{2}{3} \approx 0,67$
- * on a trouvé le coefficient multiplicatif permettant de passer de x_1 à x_0 : environ 0,67, ce qui correspond à une baisse de 1-0,67=0,33=33%

Conclusion : l'évolution réciproque d'une hausse de 50% est une baisse d'environ 33%.

hausse de 50%
$$x_0 \qquad \begin{array}{c} \times 1, 5 \\ \hline \times 1, 5 \\ \hline x_0 \end{array} \qquad x_1$$

$$x_0 \qquad \begin{array}{c} \longleftarrow \\ \div 1, 5 \\ \hline \text{ce qui revient à} \\ \hline \times 0, 67 \\ \hline \text{baisse d'environ } 33\% \end{array}$$

IV Pourcentages d'évolution et indices

Le tableau ci-dessous donne le cours annuel d'un produit à New-York (en dollars par tonne) de janvier 2010 à mars 2010.

Mois	Janvier	Février	Mars
Cours	1598	1533	1662

Nous allons dresser un tableau permettant d'avoir rapidement le pourcentage d'évolution pour chaque mois par rapport au premier mois, c'est-à-dire janvier.

Notion d'indice:

On choisit comme mois de référence le mois de janvier et on ramène à 100 le cours de ce mois.

Reste à compléter ce tableau en respectant les proportions.

	Mois	Janvier	Février	Mars
	Cours	1598	1533	1662
Ì	Indice	100	96	104

D'après ce tableau, l'évolution entre Janvier et Février est une baisse de 4%.

L'évolution entre Janvier et Mars est une hausse de 4%.

remarques:

- * Il n'est pas indispensable de mettre en place des indices pour déterminer des pourcentages d'évolution.
- * L'utilisation d'un indice (presque toujours un indice 100 fixé à un moment donné) permet une lecture plus aisée du tableau, en donnant notamment par simple lecture **certains** pourcentages d'évolution.