Chapitre 2

Études de fonction. Dérivation

Objectifs du chapitre :

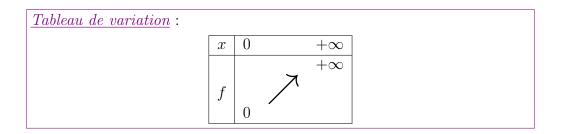
item	références	auto évaluation			
calculer une dérivée					
construire une tangente à une courbe					
étudier les variations d'une fonction					

I Fonction $x \longmapsto \sqrt{x}$

I - 1) sens de variation

propriété 1 :

La fonction
$$x \mapsto \sqrt{x}$$
 est strictement croissante sur $[0; +\infty[$.



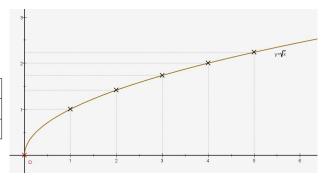
I - 2) tracé de courbe

Pour tracer la courbe représentant la fonction $f: x \mapsto \sqrt{x}$ sur $[0; +\infty[$, précisons quelques points de cette courbe.

Le tableau ci-dessous contient les coordonnées des points de la courbe d'abscisse : 0, 1, 2, 3,4 et 5.

x	0	1	2	3	4	5
$f(x) = \sqrt{x}$	0	1	$\sqrt{2}$	$\sqrt{3}$	2	$\sqrt{5}$
valeur approchée			1,41	1,73		2,24

On relie ces points par une ligne continue et régulière.

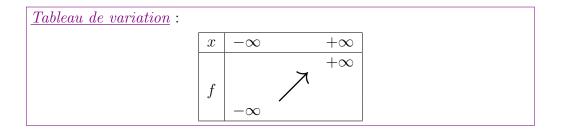


II Fonction $x \mapsto x^3$

II - 1) sens de variation

propriété 2 :

La fonction $x \mapsto x^3$ est **strictement croissante sur** \mathbb{R} .



II - 2) tracé de courbe

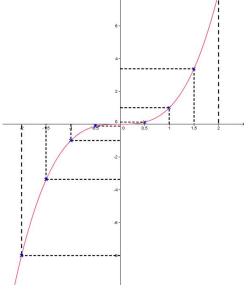
Pour tracer la courbe représentant la fonction $f: x \mapsto x^3$ sur $]-\infty; +\infty[$, précisons quelques points de cette courbe.

Le tableau ci-dessous contient les coordonnées des points de la courbe d'abscisse : -2; -1,5; -1; -0,5; 0; 0,5; 1; 1,5 et 2.

x	-2	-1,5	-1	-0,5	0	0,5	1	1,5	2
$f(x) = x^3$	-8	-3,375	-1	-0,125	0	0,125	1	3,375	8

On relie ces points par une ligne continue et régulière.

remarque : les points d'abscisse -1 et 1 sont symétriques par rapport à O. Plus généralement, on peut démontrer que les points d'abscisses a et -a sont symétriques par rapport à O. La courbe est donc symétrique par rapport à O.



IIINombre dérivé - Tangente

III - 1) taux de variation

définition 1:

Le taux de variation de la fonction f définie entre a et b, avec $a \neq b$,

est le quotient
$$\frac{f(b) - f(a)}{b - a}$$

Avec b = a + h, $h \neq 0$, ce quotient s'écrit aussi $\frac{f(a+h) - f(a)}{h}$

interprétation graphique du taux de variation

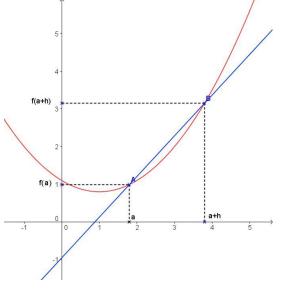
Notons A le point de coordonnées (a; f(a)) et B le point de coordonnées (a + h; f(a + h)).

Nous savons que le coefficient directeur de la sécante (AB) est égal à $\frac{y_B - y_A}{x_B - x_A}$, c'est-à-dire à $\frac{f(a+h)-f(a)}{h}.$

propriété 3:

 C_f est la courbe représentant une fonction f. A est le point de coordonnées (a; f(a)) et B le point de coordonnées (a + h; f(a + h)).

Le taux de variation de f entre a et a + h est égal au coefficient directeur de la sécante (AB).



III - 3)nombre dérivé

définition 2:

Supposons que pour les valeurs de h de plus en plus proches de zéro, avec $h \neq 0$, les nombres $\frac{f(a+h)-f(a)}{h}$ deviennent de plus en plus proches d'un nombre fixé l.

Nous dirons alors que la fonction f est dérivable en a et que l est le nombre dérivé de f en a.

11

Ce nombre dérivé est noté
$$f'(a)$$
 :
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exemple : on considère la fonction $f: x \mapsto x^2$ et a=2

Alors: $f(2+h) = (2+h)^2 = 4 + 4h + h^2$ et $f(2) = 2^2 = 4$

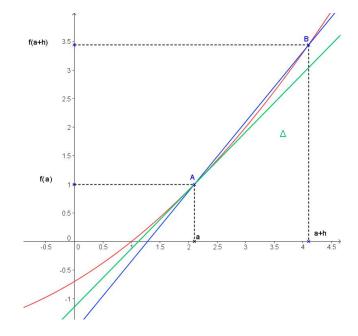
Donc $\frac{f(2+h)-f(2)}{h} = \frac{h^2+4h}{h} = h+4 \text{ et } f'(2) = \lim_{h\to 0} (h+4) = 4$

III - 4) interprétation géométrique : tangente à une courbe

définition 3:

 C_f est la courbe représentant une fonction f.

La droite Δ qui passe par le point A et dont le coefficient directeur est l = f'(a)est la **tangente** à la courbe C_f



propriété 4:

Si f est dérivable en a et de nombre dérivé f'(a), l'équation réduite de la tangente à \mathcal{C}_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a)$$

démonstration:

On sait que la tangente à C_f au point d'abscisse a est une droite qui a pour coefficient directeur f'(a) (d'après la définition 2).

Cette droite passe par ailleurs par le point de coordonnées (a; f(a)).

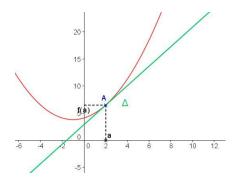
La droite d'équation y = f'(a)(x-a) + f(a) a pour coefficient directeur f'(a); de plus, pour x = a, $y = f'(a)(a-a) + f(a) = f'(a) \times 0 + f(a) = f(a)$: cette droite passe effectivement par le point de coordonnées (a; f(a)): c'est la tangente à \mathcal{C}_f au point d'abscisse a.

exemple : cherchons l'équation de la tangente à la courbe représentative de la fonction $f: x \mapsto x^2$ au point d'abscisse 2.

On a vu précédemment que f'(2) = 4

Par ailleurs, $f(2) = 2^2 = 4$

L'équation de la tangente est donc : y = 4(x-2) + 4, c'est-à-dire : y = 4x - 4



IV Dérivées de fonctions usuelles

IV - 1) fonction dérivée

définition 4:

f est une fonction en tout point x d'un intervalle I inclus dans son ensemble de définition.

Alors la fonction $x \mapsto f'(x)$, notée f', est appelée fonction dérivée de f sur I.

exemple: reprenons la fonction $f: x \mapsto x^2$

On a déterminé dans un exemple précédent le nombre dérivé de f en 2; on a trouvé : f'(2) = 4On peut déterminer si f'(2,5) et quelle est sa valeur :

Alors:
$$f(2, 5 + h) = (2, 5 + h)^2 = 6, 25 + 5h + h^2$$
 et $f(2) = 2, 5^2 = 6n25$

Donc
$$\frac{f(2,5+h)-f(2,5)}{h} = \frac{h^2+5h}{h} = h+5 \text{ et } f'(2,5) = \lim_{h\to 0} (h+5) = 5$$

On a donc déterminé deux valeurs de la fonction f': f'(2) = 4 et f'(2,5) = 5

On va à présent voir des techniques permettant de déterminer f sans avoir à l'évaluer point par point.

IV - 2) dérivée des fonctions usuelles

On considère une fonction f définie sur \mathcal{D}_f et f' sa fonction dérivée définie sur I. On peut établir les formules de dérivation suivantes :

fonction f	\mathcal{D}_f	dérivée f'	I
$f(x) = k$, avec $k \in \mathbb{R}$	\mathbb{R}	f'(x) = 0	\mathbb{R}
$f(x) = kx$, avec $k \in \mathbb{R}$	\mathbb{R}	f'(x) = k	\mathbb{R}
$f(x) = x^2$	\mathbb{R}	f'(x) = 2x	\mathbb{R}
$f(x) = x^n, \text{ avec } n \ge 2$	\mathbb{R}	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
$f(x) = \frac{1}{x^n}$, avec $n \ge 1$	\mathbb{R}^*	$f'(x) = -\frac{n}{x^{n-1}}$	\mathbb{R}^*
$f(x) = \sqrt{x}$	$[0; +\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$	$]0;+\infty[$

démonstration:

 $\overline{\text{pour }}f(x) = k:$

le taux de variation de f en a est $t(h) = \frac{f(a+h) - f(a)}{h} = \frac{k-k}{h} = 0$ et donc f'(a) = 0

pour f(x) = kx:

le taux de variation de f en a est $t(h) = \frac{f(a+h) - f(a)}{h} = \frac{ka + kh - ka}{h} = k$ et donc f'(a) = k pour tout $a \in \mathbb{R}$

 $\frac{\text{pour } f(x) = \frac{1}{x}:}{\text{le taux de variation de } f \text{ en } a \ (a \neq 0) \text{ est}}$

$$t(h) = \frac{f(a+h) - f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a-a-h}{a(a+h)}}{h} = -\frac{1}{a(a+h)} \text{ et donc } f'(a) = -\frac{1}{a^2}$$
 pour tout $a \in \mathbb{R}^*$

les résultats sont admis pour les autres fonctions.

Opérations

V - 1dérivée de u+v

propriété 5:

La somme u + v de deux fonctions dérivables sur un intervalle I est une fonction dérivable sur I et :

$$(u+v)' = u' + v'$$

démonstration:

On considère une valeur $a \in I$

Le taux de variation de la fonction u + v entre a et a + h est :

$$t(h) = \frac{(u+v)(a+h) - (u+v)(a)}{h} = \frac{u(a+h) + v(a+h) - u(a) - v(a)}{h}$$
$$= \frac{u(a+h) - u(a) + v(a+h) - v(a)}{h} = \frac{u(a+h) - u(a)}{h} + \frac{v(a+h) - v(a)}{h}$$

Or, $\lim_{h\to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$ (c'est la définition même du nombre dérivé de u en a)

et
$$\lim_{h \to 0} \frac{v(a+h) - v(a)}{h} = v'(a)$$

On a donc : $\lim_{h\to 0} t(h) = u'(a) + v'(a)$, ce qui prouve la propriété 5.

exemple:

La fonction f définie sur \mathbb{R} par $f(x) = x^2 + x$ est la somme des deux fonctions u et v définies par : $u(x) = x^2$ et v(x) = x.

Ces deux fonctions sont dérivables sur \mathbb{R} et : u'(x) = 2x; v'(x) = 1

Donc, pour tout réel x, f'(x) = 2x + 1

V - 2) dérivée de uv

propriété 6:

Le produit uv de deux fonctions dérivables sur un intervalle I est une fonction dérivable sur I et :

$$(uv)' = u'v + uv'$$

démonstration :

Cette propriété est admise.

exemple:

La fonction f définie sur $[0; +\infty[$ par $f(x) = x\sqrt{x}$ est le produit des deux fonctions u et v définies par : u(x) = x et $v(x) = \sqrt{x}$.

u est dérivable sur \mathbb{R} et v est dérivable sur $]0; +\infty[$ donc on peut dire que u et v sont dérivables sur $]0; +\infty[$.

Par ailleurs : u'(x) = 1; $v'(x) = \frac{1}{2\sqrt{x}}$

Donc, pour tout réel x > 0, $f'(x) = 1 \times \sqrt{x} + x \times \frac{1}{2\sqrt{x}} = \frac{3}{2}\sqrt{x}$

propriété 7:

Le produit ku, où u est une fonction dérivable sur un intervalle I et k une constante, est une fonction dérivable sur I et :

$$ku'(x) = ku'(x)$$

démonstration:

Il suffit d'appliquer la propriété 7 dans le cas particulier où la fonction v est constante. La dérivée d'une fonction constante est zéro, donc : $(ku)'(x) = u'(x) \times k + u(x) \times 0$, d'où le résultat.

exemple:

Si
$$f(x) = 3x^2$$
, alors $f'(x) = 3 \times 2x = 6x$

V - 3) dérivée de $\frac{u}{v}$

propriété 8 :

u et v sont deux fonctions dérivables sur un intervalle I, et pour tout x**de** *I*, $v(x) \neq 0$.

Dans ces conditions, le quotient $\frac{u}{v}$ est une fonction dérivable sur I et : $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}\right|$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

démonstration :

Cette propriété est admise.

exemple: la fonction f définie sur $\mathbb{R}-1$ par $f(x)=\frac{x}{x-1}$ est le quotient des deux fonctions u et v définies par : u(x) = x et $v(x) = \frac{1}{x-1}$ v ne s'annule sur aucun des intervalles $]-\infty;1[$ et $]1;+\infty[$. De plus, u et v sont dérivables sur ces intervalles et : u'(x) = 1; v'(x) = 1Donc, pour tout réel $x \neq 1$, $f'(x) = \frac{1 \times (x-1) - x \times 1}{(x-1)^2}$, d'où $f'(x) = \frac{-1}{(x-1)^2}$

V - 4) dérivée de $\frac{1}{4}$

propriété 9:

v est une fonction dérivable sur un intervalle I, telle que pour tout x de

Alors, la fonction $\frac{1}{v}$ est une fonction dérivable sur I et :

$$\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$$

démonstration:

Il suffit d'appliquer la propriété 8 dans le cas particulier où u est la fonction constante égale à 1.

Alors u' = 0.

exemple: la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{x^2 + 1}$ est l'inverse de la fonction v définies par $v(x) = x^2 + 1$. Or, pour tout réel $x, v(x) \neq 0$.

On a v'(x) = 2x. Donc f est dérivable sur \mathbb{R} et $f'(x) = \frac{-2x}{(x^2 + 1)^2}$

VI Relation entre dérivée et sens de variation

VI - 1) un exemple

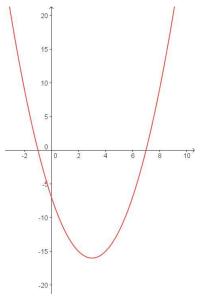
Considérons la fonction $f\mapsto x^2-6x-7$ et sa courbe représentative tracée ci-contre.

f est dérivable sur $\mathbb R$ et pour tout réel x, f'(x) = 2x - 6

- * sur] $-\infty$; 3], $f'(x) \le 0$ et f est décroissante
- * sur $[3; +\infty[, f'(x) \ge 0 \text{ et } f \text{ est croissante}]$

On peut résumer cela par le tableau suivant :

x	$-\infty$		3		$+\infty$
signe de f '		_	0	+	
	$+\infty$				$+\infty$
variations de f		\searrow		7	
			-16		



Cette relation entre le sens de variation de la fonction f et le signe de sa dérivée est un cas particulier du théorème général suivant.

VI - 2) théorème

théorème :

f est une fonction dérivable sur un intervalle I.

- * lorsque f' est positive sur I, f est croissante sur I.
- * lorsque f' est négative sur I, f est décroissante sur I.
- * lorsque f est nulle sur I, f est constante sur I.

démonstration:

Ce théorème est admis.

VII Notions d'extremum et d'extremum local

VII - 1) extremum

définition 5:

f est une fonction définie sur un intervalle I.

- * dire que f(a) est le maximum de f sur I signifie que pour tout $x \in I$, $f(x) \le f(a)$
- * dire que f(a) est le minimum de f sur I signifie que

pour tout
$$x \in I$$
, $f(x) \ge f(a)$

VII - 2) extremum local

définition 6:

f est une fonction définie sur un intervalle I, et c est un élément de I distinct de ses extrémités.

- * dire que f admet un **maximum local en** c signifie que pour tout $x \in I'$, où I' est un intervalle ouvert contenant c inclus dans I, $f(x) \leq f(c)$
- * dire que f admet un **minimum local en** c signifie que pour tout $x \in I'$, où I' est un intervalle ouvert contenant c inclus dans I, $f(x) \ge f(c)$

VII - 3) un exemple

Considérons la fonction f définie sur [-3;3] dont la représentation graphique est donnée ci-contre.

- * A est le point « le plus bas » de la courbe. Cela signifie que f(2,5) est le minimum de f sur [-3;3]
- * B est le point « le plus haut » de la courbe. Cela signifie que f(0,5) est le maximum de f sur [-3;3]
- * la fonction f admet un minimum local en (-1,2). En effet, pour tous les nombres x d'un intervalle centré en -1,2 (par exemple $I' =]-1,5;-0,9[), f(x) \leq f(-1,2)$
- * de même, la fonction f admet un maximum local en -2,5.

